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Abstract—The identification of threshold function (TF), which
determines whether a Boolean function can be represented by
an linear threshold logic gate (LTG) or not, is a fundamen-
tal but important task in the theories of threshold logic. In
this paper, we propose a more efficient and effective algorithm
of TF identification by constructing the system of irredundant
inequalities and adjusting the weight assignment comprehen-
sively. This is the first non-ILP-based approach that is able to
identify all the eight-input TFs. The experimental results demon-
strated that the proposed approach is more effective than all
the existing non-ILP-based approaches and the LTGs obtained
by the proposed approach are optimal for near 100% cases.
For TFs with 9–15 inputs, the proposed approach can iden-
tify 100 000 randomly generated TFs as well in a reasonable
CPU time.

Index Terms—Linear threshold logic gate (LTG), redun-
dancy removal, threshold function (TF) identification, weight
assignments.

I. INTRODUCTION

THRESHOLD logic is a logic representation different from
the traditional Boolean logic. It could represent a complex

Boolean function using only one linear threshold logic gate
(LTG). For example, a six-input Boolean function f = x1x2 +
x1x3x4 +x1x3x5 +x1x4x5x6 +x2x3x4 +x2x3x5x6 +x2x4x5x6 can
be represented by one LTG as shown in Fig. 1. However, not
every Boolean function can be represented by a single LTG.
A Boolean function that can be represented by one LTG is
called a threshold function (TF). For non-TFs, multiple LTGs
are needed to realize them.
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Fig. 1. Complex Boolean function f = x1x2 +x1x3x4 +x1x3x5 +x1x4x5x6 +
x2x3x4 + x2x3x5x6 + x2x4x5x6 represented by an LTG.

The fundamental study of threshold logic can be traced
back to the 1960s. In 1961, an approach to enumerating TFs
was first proposed [25]. Then, an approximation method for
determining the weights and threshold value of an LTG was
proposed as well [26]. Later, a linear programming method
was proposed for determining whether a Boolean function is
a TF or not [27]. Although many studies on threshold logic
were conducted in early days, threshold logic did not make a
great hit due to lack of efficient hardware realizations.

Recently, with the advances of emerging technologies
such as quantum cellular automata [20], resonant tunnel-
ing diodes [2], resistant switching devices [9], spin-based
devices [1], and single-electron-transistors [22], the imple-
mentations of LTGs become various and more easily [4].
Hence, threshold logic related studies, e.g., TF identifica-
tion [10], [11], [19], synthesis or optimization of threshold
logic networks [6], [13], [16], [29], timing analysis of thresh-
old network [23], and approximate computing for threshold
logic networks [14], [24], attract more attentions than ever
before. Furthermore, LTGs are also strongly related to neural
networks as well [12]. Actually, an LTG is a basic computation
unit (neuron) of artificial neural networks [3].

The identification of TF, which determines whether a given
Boolean function can be represented by an LTG or not, is
a fundamental but important task in the theories of thresh-
old logic. Furthermore, hardware cost can be reduced when
we use only one LTG instead of many LTGs to realize a
function. When a TF is recognized, the corresponding input
weights and threshold value are determined as well. The
approaches to this identification problem can be classified
into two categories: 1) integer linear programming (ILP)-based
approach [29] and 2) non-ILP-based approach [10], [11], [19].
The ILP-based approach [29] builds the system of inequali-
ties from the function and exploits ILP solvers to obtain the
weights and threshold value. However, the approach is not
scalable due to its high complexity. That is, when the num-
ber of input variables of a function increases, the number
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of derived inequalities will grow exponentially such that the
solvers cannot report the result within reasonable CPU time.

The non-ILP-based approaches [10], [11], [19], on the other
hand, use heuristics to justify whether a Boolean function is
a TF or not. Gowda et al. [10], [11] proposed an algorithm to
decompose a Boolean function into subfunctions recursively.
This process will be terminated when the subfunctions become
AND, OR functions, or constant values 0, 1. Then, the algo-
rithm merged these subfunctions and assigned weights and
threshold value to the function. Although the algorithm was
quite novel, the main drawback is that it can only identify
all the TFs with three input variables. For the functions with
4–8 input variables, it cannot completely identify them.

In the state-of-the-art, Neutzling et al. [19] derived the
system of inequalities from the irredundant sum-of-products
(ISOPs) of a Boolean function. Then, the process of weight
and threshold value assignment searches the weights and
threshold value without violating the consistency of the system
of inequalities. If an assignment is found, the function is iden-
tified as a TF; otherwise, the function is still undetermined.
Although the method is able to identify all the TFs with up
to six variables, it does not reach 100% for the functions
with seven and eight variables. Furthermore, its derivation of
system of inequalities contains many redundancies such that
the succeeding assignment procedure is inefficient.

Thus, in this paper, we propose an improved non-ILP-based
approach to TF identification. To the best of our knowledge,
our approach is the first non-ILP approach that is able to
identify all the eight-input TFs. The improvements of our
approach come from two parts. First, the derivation of system
of inequalities is more effective than the state-of-the-art [19]
by constructing irredundant inequalities only. Hence, the num-
ber of inequalities that needs to be dealt with is decreased.
Second, the procedure of weight assignment is more effec-
tive than the state-of-the-art by using a comprehensive
heuristic.

Determining a function as a non-TF is easy, but confirming
a function as a TF is quite challenging. Hence, to demon-
strate the capability of our approach in TF identification,
we construct all the NP-class TFs with 1–8 inputs as the
benchmarks.

Furthermore, to the best of our knowledge, the set of all
n-input TFs is not available publicly. Hence, we first generate
the set of all n-input TFs for n = 1 to 8 for our experiments.
However, it is not necessary to enumerate all the different
n-input TFs for n = 1 to 8. Instead, only the NP-class TFs
are sufficient. This is because the set of LTGs obtained from
the NP-class TFs covers the LTGs obtained from all the TFs
by negating and/or permuting the inputs. For example, given
a three-input function f = x1 + x2x3 in an NP-class, function
g = x2 +x1x3 also belongs to the same NP-class by permuting
x2 and x1 in f . Also, function h = x′

1 + x2x3 belongs to the
same NP-class by negating x1 in f .

According to the experimental results, our approach is able
to identify all these benchmarks as TFs. Furthermore, the com-
puted weights and threshold value of a TF are exactly the
same as the optimal ones, which were obtained by ILP-based
method [29], for near 100% cases.

The main contributions of this paper are threefold.
1) We propose an effective procedure to construct the

system of irredundant inequalities for non-ILP-based
approaches.

2) We propose a comprehensive heuristic to assign the
optimal values to the weights and threshold value of
TFs for 99.81% of all the eight-input NP-class TFs.

3) This is the first work that can identify all the eight-input
NP-class TFs, 2 700 791 in total.

The rest of this paper is organized as follows. Section II
introduces the background of threshold logic. Section III
presents the proposed approach. Section IV shows the exper-
imental results. Finally, Section V concludes this paper.

II. PRELIMINARIES

This section introduces some fundamental concepts about
threshold logic and terminologies related to the proposed
approach.

A. Linear Threshold Gate

An LTG is a logic gate, which can represent a TF with
n binary inputs and a binary output. Each input xi has
its own weight wi, and the gate has a threshold value T .
An LTG can be represented by a weight-threshold vector
<w1, w2, . . . , wi, . . . , wn; T>. The mechanism of output eval-
uation is that if the weighted summation of an input pattern
is greater than or equal to T , the output f is evaluated to 1;
otherwise, 0, as shown in the following equation:

f (x1, x2, . . . , xn) =
{

1, if
∑n

i=1 xiwi ≥ T
0, if

∑n
i=1 xiwi < T

(1)

where the parameters wi and T are integers. For example, an
LTG <9, 8, 5, 4, 3, 2; 17> as shown in Fig. 1 has the output
of 1 under the input pattern 110001, since 9+8+2 = 19 ≥ 17.
Similarly, the LTG has the output of 0 under the input pattern
011001.

B. Threshold Function

A TF is a subset of Boolean functions that can be repre-
sented by an LTG. All the TFs are unate functions. That is,
a binate function cannot be a TF. However, not every unate
function is a TF. For example, a unate function f = x1x2+x3x4
is not a TF.

C. Irredundant Sum-of-Products

Sum-of-products (SOP) is an expression to represent a
Boolean function. When a Boolean function is expressed by
ORing product terms only, where a product term is ANDed by
literals, it is called an SOP expression. ISOP is an SOP expres-
sion that no product term can be removed without changing
the functionality. The ISOP expression of a function is used as
input for generating system of irredundant inequalities in the
state-of-the-art and our approach. Although the proposed TF
identification algorithm adopts the ISOP expression as input,
there are some previous works focusing on the ISOP expres-
sion generation [8], [17], [21], [28]. For example, Minato [17]
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Fig. 2. Truth table of f = x1 + x2x3.

proposed a BDD-based algorithm to generate irredundant cov-
ers. We can easily reimplement these methods to get the ISOP
expression of any Boolean function.

D. Modified Chow’s Parameter

An input of a TF corresponds to a weight in its LTG rep-
resentation. Hence, there exists a weight ordering among all
inputs of a TF.

Muroga [18] proposed the modified Chow’s parameter,
which is used to determine the variable ordering of a TF f .
The formula of modified Chow’s parameter is listed in the
following equation:

qi( f ) = 2 × pi( f ) − p0( f ) (2)

where qi( f ) represents the parameter of the ith input vari-
able of TF f , pi( f ) is the number of minterms in the
on-set for which xi = 1, and p0( f ) is the number of
minterms in the on-set of this function. By sorting the
parameters qi( f ) in the descending order for i = 1, . . . , n,
we can obtain the corresponding variable ordering of an
n-input TF.

For example, given f = x1 + x2x3, its truth table is shown
in Fig. 2. The number of minterms in the on-set is p0( f ) = 5.
Four of them are with x1 = 1, and three of them are with
x2 = 1 or x3 = 1. Therefore, the values of p1( f ), p2( f ), and
p3( f ) are 4, 3, and 3, respectively. By (2), we can obtain
q1( f ) = 3, q2( f ) = 1, and q3( f ) = 1. Hence, the variable
ordering w1 > w2 = w3 is determined.

E. Critical Effect Vector

Critical effect vector (CEV) is an assignment for an
LTG such that the output changes from 1 to 0 when any
one of its inputs in this assignment changes from 1 to
0. For example, 110 and 101 are the only CEVs for the
LTG <2, 1, 1; 3><2, 1, 1; 3><2, 1, 1; 3>. CEVs can be derived by the algorithm
proposed in [15].

III. THRESHOLD FUNCTION IDENTIFICATION

In this section, we first review the state-of-the-art [19].
Then, we present the proposed approach in detail.

A. Review of the State-of-the-Art

The best way to review the state-of-the-art [19] is to use an
example to demonstrate its identification steps for TFs. Given
f = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x1x5x6 [19], its on-
set = {x1x2, x1x3, x1x4, x2x3, x2x4, x1x5x6}. First, the algorithm

Fig. 3. List of weighted summations for the on-set and off-set cubes of f [19].

checks whether the function is unate or not. If the function is
not unate, the function is not a TF. Since the polarity of each
literal in f is positive, f is unate.

Then, the algorithm computes a variable weight ordering
(VWO) of the function, which is a vector like the modified
Chow’s parameter for determining the variable ordering. The
resultant variable ordering of function f is x1 > x2 > x3 =
x4 > x5 = x6.

The next step is to generate the system of inequalities, which
consists of three parts.

1) Generation of inequalities from the ISOP.
2) Construction of the system of inequalities.
3) Simplification of the system of inequalities.

To generate the inequalities, the complemented function f ′ =
x′

1x′
2 + x′

1x′
3x′

4 + x′
2x′

3x′
4x′

5 + x′
2x′

3x′
4x′

6 is needed. Hence, the
off-set = {x′

1x′
2, x′

1x′
3x′

4, x′
2x′

3x′
4x′

5, x′
2x′

3x′
4x′

6} is obtained. Since
there may exist redundant cubes in the on-set and off-set
during the generation of inequalities from the ISOP, it is
not necessary to compare all the minterms/cubes in the on-
set with all the minterms/cubes in the off-set. That is, for a
minterm/cube i in the on-set whose weighted summation is
greater than or equal to that of a minterm/cube j in the on-
set, the minterm/cube i is a redundant minterm/cube. Similarly,
for a minterm/cube i in the off-set whose weighted summa-
tion is less than or equal to that of a minterm/cube j in the
off-set, the minterm/cube i is redundant as well. For example,
if cubes x1x2x3 and x1x2x′

3 are both in the on-set under the
variable ordering x1 > x2 > x3, the weighted summation of
cube x1x2x3, i.e., w1 + w2 + w3 is greater than that of cube
x1x2x′

3, i.e., w1 + w2. Hence, cube x1x2x3 is a redundant cube
and can be removed. In summary, for this example, to get the
least cubes in the on-set, the don’t care bits of one cube are
set to 0, i.e., cube x1x2 is corresponding to w1 +w2. Similarly,
to get the greatest cubes in the off-set, the don’t care bits
of one cube are set to 1, i.e., cube x′

1x′
2 is corresponding to

w3 + w4 + w5 + w6. Thus, the inequalities are generated as
shown in Fig. 3, where the greater side is for the on-set cubes,
the lesser side is for the off-set cubes, and wi represents the
weight of xi. Next, the algorithm pairs the weighted summa-
tion in the greater side with that in the lesser side as shown in
Fig. 3 to construct the system of inequalities with 6 × 4 = 24
inequalities as shown in Fig. 4.

Since Fig. 4 may still contain redundant inequalities, the
algorithm simplifies the system of inequalities by remov-
ing redundant inequalities. In this example, the algorithm
uses the same symbol to replace the same weight, i.e.,
A = w1, B = w2, C = w3 = w4, and D = w5 = w6.
Hence, the identical symbols in both sides among all the
inequalities can be removed. For example, the inequality #2
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Fig. 4. Original system of inequalities of f [19].

Fig. 5. System of inequalities of f with reformatted symbols [19].

Fig. 6. Final system of simplified inequalities of f [19].

“w1 + w2 > w2 + w5 + w6” in Fig. 4 can be transformed into
“A + B > B + D + D,” and then be simplified as “A > D + D”
by removing the symbol B. As a result, the system of inequal-
ities in Fig. 4 can be reformatted as Fig. 5. The redundant
inequalities in Fig. 5, which are either repeated inequalities or
compatible with the VWO, are eliminated as well. For exam-
ple, the inequalities #3 and #4 are repeated; the inequality #22
is compatible with the VWO A > B > C > D. After eliminat-
ing the redundant inequalities, the final system of inequalities
is as shown in Fig. 6. The number of remaining inequalities
is reduced from 24 to 8.

The last step of TF identification is the weight assignment
and threshold value computation. The algorithm heuristically
determines a weight assignment (7, 6, 3, 3, 1, 1) to the
variables of (x1, x2, x3, x4, x5, x6).1 The threshold value is
computed as the least weighted summation of the cube in the

1We will use another complex example to demonstrate the process of weight
assignments.

(a) (b)

Fig. 7. (a) LTG of g = x1x2 [16]. (b) Hyperplane and hyperspaces of an
AND gate [16].

Fig. 8. List of irredundant weighted summations in the greater side and
lesser side of f .

Fig. 9. System of inequalities of f .

on-set. In this example, the weighted summations of the on-
set cubes are 13, 10, 10, 9, 9, and 9, respectively. Hence, 9
is chosen as the threshold value. At this moment, the weights
and threshold value of the function f are found successfully,
and f is identified as a TF.

B. Generation of the System of Irredundant Inequalities

In Section III-A, we used an example to demonstrate the
algorithm of the state-of-the-art [19]. Although the algorithm
simplified the system of inequalities significantly, we still
observed that the system of inequalities contained redundancy.

Let us first explain the reason behind this redundant inequal-
ity generation. An important characteristic of TF is linear
separability [16], which means that there exists a hyperplane
separating the on-set cubes and off-set cubes in two hyper-
spaces for a TF. For example in Fig. 7, given g = x1x2 and its
LTG, there exists a hyperplane L :

∑2
i=1 xiwi = T separating

cube x1x2 in H+ from cubes x′
1x2, x1x′

2, x′
1x′

2 in H−. Since
the weighted summations of the least cubes in the on-set are
always larger than that of the greatest cubes in the off-set, a
naive way to generating the system of inequalities is to pair
up all the weighted summations with respect to these cubes
exhaustively as did in the state-of-the-art [19]. However, some
weighted summations of the greater side or the lesser side are
redundant when considering the computed VWO.

Thus, in this paper, we propose two redundancy removal
steps to obtain the system of irredundant inequalities effi-
ciently as follows.
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Fig. 10. System of irredundant inequalities of f .

1) Redundant Weighted Summation Removal: For the same
function f = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x1x5x6 in
Section III-A, Fig. 3 lists six weighted summations in the
greater side and four weighted summations in the lesser side.2

However, according to the computed VWO x1 > x2 > x3 =
x4 > x5 = x6 by using the modified Chow’s parameter or
VWO, we can further remove some redundant weighted sum-
mations in the greater side or lesser side. For example, since
w1 + w2 is larger than w2 + w3 in the greater side under the
variable ordering x1 > x2 > x3 = x4 > x5 = x6, w1 + w2
is redundant and can be removed. As a result, Fig. 3 can be
updated as Fig. 8, where two weighted summations and three
weighted summations are left in the greater side and lesser
side, respectively.

2) Redundant Inequality Removal: In this step, to construct
the system of irredundant inequalities, the algorithm pairs the
irredundant weighted summations in the greater side with that
in the lesser side as shown in Fig. 9. However, there might still
exist redundant inequalities after the pairing procedure. For
an inequality i, when the weighted summation in the greater
side is larger than that in the lesser side under the computed
variable ordering, the inequality i is definitely satisfiable and
does not need to be further considered. For example, given a
weighted summation w1+w2 in the greater side and w3+w4 in
the lesser side under the weight ordering w1 > w2 = w3 > w4,
the inequality “w1 + w2 > w3 + w4” is definitely satisfiable.
Hence, it is a redundant inequality and does not need to be
constructed during the pairing procedure.

For this demonstrative example f = x1x2 + x1x3 + x1x4 +
x2x3 +x2x4 +x1x5x6, the weighted summation of w1 +w5 +w6
is larger than that of w2 + w5 + w6. Hence, the inequalities
#5 “w1 + w5 + w6 > w2 + w5 + w6” in Fig. 9 is a redundant
inequality and does not need to be constructed. After conduct-
ing this redundant inequality removal step, the final system of
irredundant inequalities is constructed as shown in Fig. 10.
Compared with the state-of-the-art on this example, the num-
ber of remaining inequalities is reduced from 8 to 4, or 50%
reduction. This reduction can lead the succeeding procedure,
i.e., weight assignment, to be more efficient.

Note that we could also identify a function as a non-TF
in this step of redundant inequality removal. That is, when a
resultant inequality in the final system of irredundant inequali-
ties violates linear separability, the function can be identified as
a non-TF, and the procedure of TF identification is terminated.
For example, given h = x1x2+x3x4 under the variable ordering
x1 = x2 = x3 = x4, where an irredundant cube x1x2 is in the
on-set, and an irredundant cube x1x3 is in the off-set. Then,

2These weighted summations are corresponding to the cubes in the on-set
and off-set.

Fig. 11. List of irredundant weighted summations in the greater side and
lesser side of s.

Fig. 12. System of irredundant inequalities of s.

we can obtain an inequality w1 + w2 > w1 + w3. However,
according to the variable ordering, the weighted summation
of cube x1x2 should be equal to that of cube x1x3. Thus, h is
identified as a non-TF.

C. Weight Assignment Procedure

In this section, we use a more complex example to demon-
strate the procedure of weight assignment in the state-of-
the-art [19]. Then, we present our new procedure of weight
assignment in detail.

1) Review of the State-of-the-Art [19]: The example we
use here is a TF that the state-of-the-art cannot identify suc-
cessfully. Given a seven-input function s = x1x2x3 + x1x2x4 +
x1x2x5 +x1x2x6 +x1x2x7 +x1x3x4 +x1x3x5 +x1x3x6 +x1x4x5 +
x1x4x6 + x1x5x6x7 + x2x3x4 + x2x3x5 + x2x3x6 + x2x4x5 +
x2x4x6 + x2x5x6x7 + x3x4x5, the irredundant weighted summa-
tions in the greater side and lesser side have been computed as
Fig. 11. Its final system of irredundant inequalities has been
derived as well by using our method under the variable order-
ing x1 = x2 > x3 = x4 > x5 > x6 > x7 as shown in Fig. 12.3

By replacing the same weight wi with the same symbol, i.e.,
A = w1 = w2, B = w3 = w4, C = w5, D = w6, E = w7, the
system of inequalities is reformatted as Fig. 13.

The objective of this assignment procedure is to assign a
least weight to each variable such that all the inequalities
are satisfiable. If an assignment can be found, the function
is a TF; otherwise the function is identified as an unde-
termined function. Hence, the weight assignment algorithm
first assigns a least positive integer to each weight satisfy-
ing the variable ordering A > B > C > D > E, i.e.,
A = 5, B = 4, C = 3, D = 2, and E = 1. This assign-
ment is called an initial weight assignment. Then, the system
of inequalities is obtained under this assignment as shown in

3We focus on the weight assignment procedure in this example.
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Fig. 13. System of irredundant inequalities of s with reformatted symbols.

Fig. 14. Weighted summation of the system of irredundant inequalities of s
under the initial weight assignment A = 5, B = 4, C = 3, D = 2, and E = 1.

(a) (b)

Fig. 15. Weighted summation of the system of irredundant inequalities of
s under the (a) weight assignment (6, 5, 4, 2, 1) and (b) weight assignment
(7, 5, 4, 2, 1).

Fig. 14, where some inequalities are not held. These inequal-
ities are called false inequalities. Next, it adjusts the weights
from the smallest weight in an ascending order. However, if
the greater sides of all the false inequalities do not contain
the considered weight, the algorithm adjusts the next larger
weight. For this example, the weight E is examined first, but
it is not adjusted since E does not appear in the greater sides of
all the false inequalities #1, #3, #5, and #8. Then, the weight
D is considered next and is not adjusted as well due to the
same reason.

Next, the weight C is adjusted since it appears in the greater
sides of the false inequalities #5 and #8. The increment of
a weight is one each time for having a minimal increase of
weights. Note that the updated weights have to be compatible
with the variable ordering. For this example, when the weight
C is increased from 3 to 4, the weights B and A are increased
to 5 and 6 as well, respectively, for being compatible with the
variable ordering. As a result, the weighted summation of the

Fig. 16. Weighted summation of the system of irredundant inequalities of s
under the weight assignment (7, 6, 5, 2, 1).

Fig. 17. System of irredundant inequalities of p.

system of inequalities of s is summarized in Fig. 15(a), where
inequality #8 becomes a true inequality.

However, when A, B, C, D, and E are assigned as
(7, 5, 4, 2, 1) using the same procedure as shown in Fig. 15(b),
some original true inequalities, #4, #7, and #11, become false
inequalities though. We call this a flip situation. Note that the
flip situation could lead the weight assignment procedure to
be inefficient or even failed. Then, the algorithm increases the
largest weight in the greater side of each inequality, i.e., B is
from 5 to 6 and C is from 4 to 5, to make them become true
again. Unfortunately, three original false inequalities #1, #3,
and #5 are not held again under this new weight assignment
(7, 6, 5, 2, 1) as shown in Fig. 16. As a result, the algorithm
cannot find a weight assignment satisfying all the inequalities,
and s is identified as an undetermined function. In fact, s is
TF with the weight assignment (8, 6, 5, 3, 1).

In summary, two key factors make the state-of-the-art [19]
fail to identify some TFs.

1) It adjusts weights in a fixed sequence from the small-
est weight to the largest weight, which may miss some
opportunities of adjusting the most appropriate weight.

2) When encountering a flip situation, it simply increases
the largest weight in the greater side of each false
inequality, which cannot completely solve the flip sit-
uation.

2) Proposed Weight Assignment Method: In this section,
we present the proposed weight assignment method. We use a
TF p to explain our weight assignment algorithm, where p can-
not be identified as a TF by the state-of-the-art as well. Given
p = x1x2x3+x1x2x4+x1x2x5x6+x1x2x5x7+x1x3x4+x1x3x5x6+
x1x4x5x6+x2x3x4+x2x3x5x6+x2x4x5x6 with the variable order-
ing x1 = x2 > x3 = x4 > x5 > x6 > x7, and its system of
irredundant inequalities is as shown in Fig. 17. By replacing
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Fig. 18. System of irredundant inequalities of p with reformatted symbols.

TABLE I
DEFINITIONS OF SYMBOLS G(wi), L(wi), AND d(wi)

Fig. 19. Weighted summation of the system of irredundant inequalities of p
under the weight assignment (5, 4, 3, 2, 1).

the same weight wi with the same symbol, the reformatted
system of irredundant inequalities is as shown in Fig. 18. The
initial weight assignment is A = 5, B = 4, C = 3, D = 2,
and E = 1, and the weighted summation of the system of
irredundant inequalities of p under the initial assignment is
as shown in Fig. 19. In Fig. 19, we see that the inequalities
#1–#6 are false inequalities. However, instead of adjusting the
weight in a fixed sequence under the VWO as the state-of-
the-art [19] did, we present a more comprehensive method to
adjust the weights that are called critical weights (CWs). In
fact, when a weight increment can turn more false inequali-
ties into true inequalities, this weight is an appropriate weight
to be adjusted. Definition 1 defines the CW. Table I lists the
definitions of symbols G(wi), L(wi), and d(wi).

Definition 1: The CWs are the weights whose d(wi) > 0.
When there are more than one CW among the weights, we

individually adjust the top x of them based on the magnitude
of d(wi) for avoid missing proper assignments, where x can
be set by users. Note that the larger x is set, the more TFs
will be identified. But the weight assignment procedure needs
more iterations. In our weight assignment procedure, we set x
as 3 to trade the efficiency off against the effectiveness.

For example, in this function p, d(A) = G(A)−L(A) = 4−
2 = 2, d(B) = 5−3 = 2, d(C) = −3, d(D) = −3, and d(E) =
−4. Hence, the CWs are A and B. By adjusting A, the weight
assignment becomes (6, 4, 3, 2, 1); by adjusting B, the weight
assignment becomes (6, 5, 3, 2, 1). Note that weight A will
be increased as well when B is equal to A after increasing B.

Fig. 20. Weighted summation of the system of irredundant inequalities of p
under the weight assignment (6, 5, 3, 2, 1).

Fig. 20 is the weighted summation of the system of irredundant
inequalities of p under the weight assignment (6, 5, 3, 2, 1).
Three false inequalities are left to be solved.

Next, since d(A) = 4, and d(B) to d(E) are all negative
values, we increase weight A only in this iteration, and the
new weight assignment becomes (7, 5, 3, 2, 1) as shown in
Fig. 21(top). When the weight assignment is increased to
(8, 6, 3, 2, 1), we have d(A) = −2, d(B) = 2, d(C) = 1,
d(D) = 1, d(E) = −1, and B, C, and D are CWs as shown
in Fig. 22. Hence, the weight assignment is increased to
(8, 7, 3, 2, 1), (8, 6, 4, 2, 1), and (8, 6, 4, 3, 1), respectively. At
last, the correct weight assignment (9, 7, 4, 3, 1) satisfying all
the inequalities is obtained by running the same procedure, and
the weight assignment algorithm is terminated. The complete
weight assignment procedure is summarized in Fig. 21.

Note that two additional conditions for terminating the
weight assignment procedure are presented as follows.

1) When there is no CW i.e., each d(wi) ≤ 0 in an iteration,
the function is identified as a non-TF and the weight
assignment procedure is terminated. This is because
when each d(wi) ≤ 0, the sum of all the weighted sum-
mations in the greater side is less than or equal to that
in the lesser side. Obviously, this condition violates the
linear separability property of TF. Thus, we can confirm
that the function is not a TF.

2) When an assigned weight is larger than the theoreti-
cally maximum value, the function is identified as an
undetermined function and the weight assignment pro-
cedure is terminated. This is because the author in [18]
has shown an upper bound of maximum weight of an
n-input TF, e.g., the maximum weight is 76 for an eight-
input TF, and our approach increases the weights from
the least positive integer gradually. Hence, when one
assigned weight is greater than this upper bound value,
the function is an undetermined function.

D. Threshold Value Computation

After having the weight assignment of a TF, we compute its
threshold value. According to the linear separability property
of a TF, we have known that all the weighted summations
in the on-set are definitely greater than that in the off-set.
Thus, we can obtain the least threshold value by increasing
the largest weighted summation in the off-set by 1.



LIU et al.: TF IDENTIFICATION BY REDUNDANCY REMOVAL AND COMPREHENSIVE WEIGHT ASSIGNMENTS 2291

Fig. 21. Process of weight assignments for p.

Fig. 22. Weighted summation of the system of irredundant inequalities of p
under the weight assignment (8, 6, 3, 2, 1).

Fig. 23. List of irredundant weighted summations in the greater side and
lesser side of p.

For example, regarding the above mentioned function p, the
list of weighted summations for the on-set and off-set cubes
is as shown in Fig. 23. The weighted summations in the off-
set are 22, 21, 22, and 22, respectively. Hence, the threshold
value is computed as 22 + 1 = 23. As a result, we identify
the function p as a TF successfully with the weight-threshold
vector <9, 9, 7, 7, 4, 3, 1; 23>.

E. Overall Flowchart of TF Identification Algorithm

This section summarizes the overall flowchart of TF iden-
tification algorithm as shown in Fig. 24. Given a Boolean
function f in ISOP form, the algorithm first checks the
unateness of f . If f is not unate, it is identified as a non-
TF; otherwise, the algorithm determines the variable ordering
based on the modified Chow’s parameter. Then, the algorithm

generates the system of irredundant inequalities. If there exists
an inequality against the variable ordering, f is identified as a
non-TF; otherwise, the algorithm gives a weight assignment.
If all the inequalities are satisfiable under the assignment, it
computes the threshold value and f is identified as a TF; oth-
erwise, the algorithm enters a weight adjustment loop. That is,
for each iteration, the algorithm computes whether there exist
CWs to be increased. If there exists a CW to be increased, the
algorithm adjusts weight about the CW and checks whether all
the inequalities are satisfied under the new weight assignment;
otherwise, f is identified as a non-TF. Note that the weight
adjustment loop also checks whether the largest assigned
weight is equal to the theoretically maximum weight value of
the function. If it is the case, f is identified as an undetermined
function; otherwise, the algorithm runs for the next iteration.

F. Pseudo Code and Time Complexity of TF Identification
Algorithm

The pseudo codes of inequality simplification and weight
assignment are as shown in Figs. 25–27. For the redun-
dant weighted summation removal algorithm and redundant
inequality removal algorithm, given the numbers of weighted
summation in the on-set n, and in the off-set f, the time
complexity is O(n2 + f 2) and O(n ∗ f ), respectively. The
weight assignment procedure is presented as a pseudo code in
Fig. 27. Given the user-defined parameter X, the upper bound
of theoretically maximum value m, the number of the false
inequalities f, and the number of inputs n, the time complex-
ity of weight assignment algorithm is O(Xm ∗ f ∗ n). It seems
that this complexity is high. However, the algorithm is prac-
tically efficient when considering the following three pruning
situations. First, since the CWs are the weights with posi-
tive d(wi), the number of CWs is likely smaller than X in
some iterations. Second, when there is no CW in a certain
iteration, the procedure of weight assignment will be termi-
nated. Finally, when a valid weight assignment satisfying all
the inequalities is obtained, the procedure of weight assign-
ment will be terminated. On the other hand, the required CPU
time is strongly related to the magnitude of weight assignment,
which determines the number of iterations. By examining all
the eight-input TFs, we found that the maximum weight of
more than 60% of TFs is smaller than 20, which is far below
the upper bound of theoretically maximum value, 76. That
means the proposed approach would be terminated earlier for
most cases. This also matches our experimental results, 0.08 s
for identifying an eight-input TF on average.

IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ language.
The experiments were conducted on a 2.6-GHz Linux platform
(CentOS 6.7). The experiments consist of three parts. The first
part is to show the effectiveness of the proposed method in the
TF identification for 1 to 8-input functions. The second one
is to show the optimality of computed weight assignments
and threshold value of the identified TFs. The last experiment
is to show the applicability of the proposed approach to the
functions with 9–15 inputs.
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Fig. 24. Overall flowchart of TF identification.

Fig. 25. Pseudo code of redundant weighted summation removal algorithm.

A. Effectiveness

As mentioned, to identify a function as a non-TF is easy, but
to identify a function as a TF is more challenging. To show the
effectiveness of our method in the TF identification, we need
to have all the NP-class TFs at hand for the first experiment.
However, in [18], only the total numbers of n-input NP-class
TFs are available. Furthermore, the set of all n-input NP-class

Fig. 26. Pseudo code of redundant inequality removal algorithm.

TFs is not available publicly as well. Hence, we first generate
the set of all n-input NP-class TFs for n = 1 to 8 for our
experiments.

Let us introduce our method of generating NP-class TFs.
The method assigns the theoretically maximum weight of an
n-input function, maxn, obtained from [18] to each weight,
and sets maxn ×n as the threshold value. Then, the algo-
rithm generates a new weight assignment by decreasing the
weights or threshold value of 1 iteratively until one of
weight values or threshold value is less than 1. The pseudo
code of TF generation algorithm is as shown in Fig. 28.
Although this approach tried all combinations to find all
the TFs, we used some ideas to speed up this process as
follows.

1) If the weights and threshold value have a common divi-
sor, for example, <4, 4, 4, 4; 16>, the process will skip
this combination since we can definitely find the same
TF from <1, 1, 1, 1; 4>.

2) If the LTG has useless inputs [13], we will skip this com-
bination. A useless input is defined as the input when



LIU et al.: TF IDENTIFICATION BY REDUNDANCY REMOVAL AND COMPREHENSIVE WEIGHT ASSIGNMENTS 2293

Fig. 27. Pseudo code of weight assignment algorithm.

it toggles under all combinations, the output of LTG is
still intact. For example, the input with respect to the
weight 1 in <5, 5, 1; 10> is a useless input. The reason
that we can skip this combination is because the corre-
sponding variable of the useless input will not exist in
its ISOP expression. As a result, when an n-input LTG
has useless inputs, its ISOP expression will represent a

function with fewer inputs, which belongs to the other
categories of inputs.

During the iterations, when an LTG with a new weight-
threshold vector is generated, we compute the set of CEVs [15]
of this LTG, where a set of CEV can uniquely represent a
Boolean function. That is, two LTGs with different weight-
threshold vectors will be functionally equivalent if and only if
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TABLE II
COMPARISON OF THE NUMBER OF IDENTIFIED NP-CLASS TFS AMONG NON-ILP-BASED APPROACHES AND OUR APPROACH

Fig. 28. Pseudo code of TF generation algorithm.

they have the same set of CEVs. Hence, when a new LTG has
a new set of CEVs, its corresponding Boolean function is a
new TF. By this method, we can generate all the NP-class TFs
with 1–8 inputs in ISOP form, and ensure that each generated
TF can be represented by an LTG with positive integers.

In this experiment, we compare our results against the first
non-ILP-based approach for TF identification [10] and the
state-of-the-art [19] in terms of the numbers of identified

TFs with 1–8 inputs. The experimental results are summa-
rized in Table II. Column 1 lists the number of inputs in TFs.
Column 2 lists the total numbers of NP-class TFs with 1–8
inputs, which were provided in [18]. Columns 3, 5, and 7
present the numbers of TFs identified by [10], [19], and our
approach, respectively. Columns 4, 6, and 8 show the corre-
sponding percentages of the identified TFs in [10] and [19],
and our approach, respectively, compared with the total
number of TFs.

According to Table II, we observed that [10] can only
identify all the TFs within three inputs, and identify 88.2%,
56.5%, 18.2%, 2.0%, and 0.06% of TFs for 4 to 8-input func-
tions, respectively. For the state-of-the-art [19], the TFs within
six inputs are completely identified. However, only 79.5% of
seven-input TFs are identified, and no result reported for eight-
input TFs. In our approach, we identify all the TFs within eight
inputs successfully. This is the first non-ILP-based work that
reaches this achievement.

B. Optimality

Generally, compared with the ILP-based approach, non-ILP-
based approaches can identify a TF more efficiently if they
succeed. However, the obtained weights or threshold value
are usually not optimal. Hence, in this experiment, we would
like to show the obtained weights and threshold value in our
approach are the same with the optimal values for 99.4% of
cases.

The benchmarks we used in this experiment are all TFs
with 1–8 inputs as well. We compare our results with an
ILP-based approach [29] in terms of CPU time and percent-
age of identified TFs that have optimal weights and threshold
values. In [29], the optimization models were expressed in
the AMPL modeling language [7], and solved by the solver
Lp_Solve [5]. The experimental results are summarized in
Table III. Column 1 lists the number of inputs. Columns 2
and 4 show the CPU time of [29] and our approach measured
in seconds, respectively. Column 3 is the number of LTGs with
the optimal weights and threshold value obtained by Zhang et
al. [29]. Since [29] is an ILP-based approach, which can obtain
the optimal results, the numbers in this Column are identical
to the total number of TFs. Column 5 shows the CPU time



LIU et al.: TF IDENTIFICATION BY REDUNDANCY REMOVAL AND COMPREHENSIVE WEIGHT ASSIGNMENTS 2295

TABLE III
COMPARISON OF CPU TIME AND THE NUMBER OF OBTAINED OPTIMAL LTGS BETWEEN AN ILP-BASED APPROACH AND OUR APPROACH

TABLE IV
IDENTIFICATION OF RANDOMLY GENERATED 100 000 TFS

WITH 9–15 INPUTS

ratio (ratio1) of our approach to [29]. Column 6 is the number
of TFs having the optimal weights and threshold value by our
approach, and the corresponding ratio (ratio2) is shown in the
last column.

According to Table III, we observed that the CPU time of
our approach is much less than that of ILP-based approach [29]
for the 4 to 8-input TFs, indicating that our approach is very
efficient. For example, for all the eight-input TFs, [29] needs
2 826 780 s (more than 32 days) to identify them. However,
we only need 251 700 s to identify them instead. The CPU
time ratio is 0.08.

We also observed that for the eight-input TFs, our approach
took more time compared to dealing with the smaller input
TFs. The reasons are analyzed as follows.

1) For many eight-input TFs, two CWs are needed to be
increased for most iterations in the procedure of weight
assignment. Hence, the search space grows significantly.

2) The weight values of many eight-input LTGs are large
such that the weight assignment procedure needs more
iterations to reach the weights of the LTGs. Note that
many of eight-input TFs cannot be identified by other
heuristics according to Table II.

Next, we discuss the optimality about the results of our
approach. The LTGs obtained by the ILP-based approach [29]
are called the optimal LTGs due to the optimal weights and
threshold value. Hence, we count the number of LTGs that are
optimal LTGs obtained by our approach. The results are shown

in Table III and demonstrate that more than 99.4% of obtained
LTGs are optimal LTGs for all the TFs with 1–8 inputs by our
approach. These results indicate that our approach is effective
in identifying TFs with high qualities.

The reason for missing the optimal weights and thresh-
old value for a tiny number of cases of 7, eight-input TFs
is as follows. Our weight assignment strategy is based on
a breadth first search algorithm. Once the strategy obtains
a weight assignment satisfying the system of inequalities, it
will be terminated instead of continuing the process of weight
assignment for traversing the whole solution space. As a result,
the proposed identification algorithm could miss the optimal
weight assignments and threshold value when a suboptimal
solution has been found already. If we want to obtain the
optimal weight assignment and threshold value for all the TFs,
the algorithm would be changed to search for all the valid
solutions and then pick up the optimal one.

C. Applicability

To show that our approach is also effective and efficient
for identifying TFs with more than eight inputs, we conduct
this experiment for identifying TFs with 9–15 inputs. Since
the number of all the TFs with more than eight inputs is too
large to be enumerated, we randomly generate 100 000 TFs for
an input category to evaluate the effectiveness and efficiency
of our approach. From another viewpoint, most synthesized
threshold circuits have no LTG with more than 15 inputs due
to physical implementation concern. Thus, we decide to iden-
tify TFs with 9–15 inputs to show the applicability of our
approach.

The results of this experiment are summarized in Table IV.
According to Table IV, our approach is able to identify all
the randomly generated 100 000 TFs with 9–15 inputs, and
it spent less than 0.002 s for identifying a TF on average.
This result demonstrates the efficiency of our approach. Let
us discuss the growth of CPU time with respect to the number
of inputs. Since the TFs are generated randomly, the value of
each weight of an LTG cannot be predetermined. That means
the scales of weights in different inputs might be completely
different. Due to this reason, the growth of CPU time is various
for different input categories as expected.
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V. CONCLUSION

In this paper, we propose an efficient and effective approach
for TF identification. We first significantly decrease the
number of inequalities by removing redundancies. Then, we
present a comprehensive weight assignment procedure. As the
experimental results demonstrated, our approach is the first
non-ILP-based approach that is able to identify all the NP-
class TFs with 1–8 inputs. Furthermore, more than 99.4% of
resultant LTGs of TFs are optimal LTGs. Last, we showed the
applicability of our approach for identifying TFs with 9–15
inputs in a reasonable CPU time. Our achievements advance
the theoretical research in threshold logic and could improve
the synthesis and optimization of threshold logic circuits.
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